Engineering Workstations
The Intel Pentium CPU microprocessor reduced the performance gap between PCs and workstations. A current trend is the merging of PCs and workstations into ‘‘personal workstations.’’ Pentium Pro and RISC processors, such as DEC Alpha, Sparc MIPS, Power PC, and PA-RISC, are all powerful personal workstations with high-performance graphics accelerators. Until recently, operating systems were the main distinction between a low-end workstation and a high-end PC. The UNIX operating system, which supports multitasking and networking, usually ran on a workstation. DOS, Windows, and the Macintosh operating systems, which perform single tasks, usually ran on PCs. That distinction is beginning to disappear because of the birth of Microsoft Windows NT, Windows XP, and IBM’s OS/2
operating systems. All of these operating systems support multitasking and networking as well. Other operating systems designed for workstations are being modified for use on a PC, such as IBM’s AIX. UNIX now runs on laptop computers with the PowerPC microprocessor.
Many CAD and FEA software applications are traditionally UNIX-based applications. Since there are significant differences in price between UNIX and Windows NT and XP, more and more CAD and FEA vendors have released versions of their software forWindows. Memory capacity for a personal workstation can be up to 4–8 GB with up to 250 GB of disk space, such as those from Silicon Graphics and Hewlett-Packard’s Indy Systems. Due to 64-bit technology and a scaleable modular platform, high-end workstation performance can now boast supercomputer-like performance at a fraction of the cost of a mainframe or
supercomputer. The noted performance gain is a result of using more powerful 64-bit word addressing and up to 3.2-GHz clock speed. Dual processors available in some engineering workstations with the DEC Alpha system, Intel Pentium chip, or Motorola 68060 chip allow some degree of scaleable parallel processing within current engineering workstations.
The term ‘‘workstation’’ has colloquially become context dependent. However, technically speaking, a workstation is any networked computer that accesses or inputs data into the system. Previously, workstations were known as ‘‘dumb terminals’’ because of their lack of processing and storage ability. This shortcoming required them to be linked to extremely large mainframes, which in turn only allowed them to see what the network would show them.
Today’s workstations, or ‘‘clients,’’ are no longer ‘‘dumb,’’ since they are capable of storing their own information as well as a variety of programs. Nonetheless, these distributed client–server networks, as can be found in Novell’s Netware or Microsoft’s Windows NT or XP, still incorporate a single or many large and powerful computers. For the Windows-based peer-to-peer network, there is no longer a need for a powerful
central computer, as any of the computers in the network may serve as the server, a workstation, or both. The term workstation again changes meaning in the context of engineering, high-end graphics rendering, CAD, and other such lofty uses. In these contexts, the term typically refers to supermachines with the most memory, fastest screens, fastest processors, and, naturally, the highest prices.
Emory W. Zimmers, Jr. and Technical Staff
Enterprise Systems Center
Lehigh University
Bethlehem, Pennsylvania
for STEP BY STEP GUIDE solidwork simple tutorial please visit.........
www.solidworksimpletutorial.blogspot.com
---or---